Marginal inferential models

نویسندگان

  • Ryan Martin
  • Jing-Shiang Hwang
  • Chuanhai Liu
چکیده

Inferential models (IMs) provide a general framework for prior-free, frequencycalibrated, posterior probabilistic inference. The fundamental idea is the use of unobservable auxiliary variables to describe the underlying uncertainty about the parameter of interest. When nuisance parameters are present, a marginalization step can reduce the dimension of the auxiliary variable, which in turn leads to more efficient inference. Unlike classical marginalization procedures that use optimization or integration, the proposed framework works with a set union operation. Sufficient conditions are given for when this marginalization operation can be performed without loss of information, and in such cases we prove that an appropriately constructed IM is calibrated, in a frequentist sense, for marginal inference. In problems where these sufficient conditions are not met, we propose a generalized marginalization technique based on parameter expansion that leads to possibly conservative marginal inference. Details are given for two benchmark examples: Stein’s many-normal-means problem and the Behrens–Fisher problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Theory of Inferential Models Ii . Marginal Inference

This paper is a continuation of the authors’ theoretical investigation of inferential model (IMs); see Martin, Hwang and Liu (2010). The fundamental idea is that prior-free posterior probability-like inference with desirable long-run frequency properties can be achieved through a system based on predicting unobserved auxiliary variables. In Part I, an intermediate conditioning step was proposed...

متن کامل

Full Bayesian inference with hazard mixture models

Bayesian nonparametric inferential procedures based on Markov chain Monte Carlo marginal methods typically yield point estimates in the form of posterior expectations. Though very useful and easy to implement in a variety of statistical problems, these methods may suffer from some limitations if used to estimate non-linear functionals of the posterior distribution. The main goal is to develop a...

متن کامل

Local and Global Inference for High Dimensional Nonparanormal Graphical Models

This paper proposes a unified framework to quantify local and global inferential uncertainty for high dimensional nonparanormal graphical models. In particular, we consider the problems of testing the presence of a single edge and constructing a uniform confidence subgraph. Due to the presence of unknown marginal transformations, we propose a pseudo likelihood based inferential approach. In sha...

متن کامل

Multivariate Frailty Models for Exchangeable Survival Data with Covariates

We consider a multivariate lognormal frailty model for correlated exchangeable failure time data, where the marginal lifetimes have conditional Weibull distributions. We discuss Bayesian statistical methods to fit this model to experimental data with varying cluster sizes. The Bayesian inferential approach arises naturally from the hierarchical structure of the frailty model. In contrast, imple...

متن کامل

Generalized inferential models

This paper generalizes the authors’ inferential model (IM) framework for priorfree, posterior probabilistic inference about unknown parameters. This generalization is accomplished by focusing on an association model determined by the sampling distribution of a function of the data and parameter. The advantage is that the new association model is generally easier to work with than that determine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011